2016線性代數(shù)部分復(fù)習(xí)建議

最后更新時(shí)間:2015-12-03 14:48:55
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢(xún)
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來(lái)跨考秋季集訓(xùn)營(yíng),幫你尋方法,定方案! 了解一下>>
線性代數(shù)有兩條學(xué)習(xí)的主線,一條是方程組理論,一條是特征值理論。第一條主線線性方程組理論由兩個(gè)主要問(wèn)題構(gòu)成,一是線性方程組解是否存在,就是解的判定問(wèn)題;二是如果線性方程組有無(wú)窮多解,那如何表示這無(wú)窮多解呢?就是解的構(gòu)成問(wèn)題。第二條主線主要是研究矩陣對(duì)角化問(wèn)題。其中第一章行列式,第二章矩陣都是為后續(xù)章節(jié)做準(zhǔn)備。下面,具體分析一下各章之間的聯(lián)系和復(fù)習(xí)方法。
第一章行列式,主要考察行列式的計(jì)算,而且單獨(dú)考察的情況較少見(jiàn),主要是結(jié)合方程組解的問(wèn)題去考察,因此,在學(xué)習(xí)第一章是重點(diǎn)去學(xué)習(xí)如何計(jì)算特殊類(lèi)型的行列式的計(jì)算方法,比如:爪型、對(duì)角線型;三階行列式(主要為計(jì)算特征值做準(zhǔn)備);行列式展開(kāi)定理;行列式的性質(zhì)等。
第二章矩陣主要掌握矩陣運(yùn)算性質(zhì)、逆矩陣(包括逆矩陣的判定、求逆矩陣)、初等矩陣(左行右列原則、初等矩陣的逆矩陣)。其中最重要的方法——初等變換——必須很好很熟練地掌握,這決定了后續(xù)章節(jié)的學(xué)習(xí)是否能順利算出正確的結(jié)果,是得分的關(guān)鍵。這一部分還有一個(gè)線性代數(shù)的核心概念:秩。矩陣的秩是一個(gè)“結(jié)”,是一個(gè)“扣”,打開(kāi)這個(gè)“結(jié)”,解開(kāi)這個(gè)“扣”,矩陣,甚至線代就學(xué)透徹一大半了。
第三章向量及線性方程組是通過(guò)研究向量組之間的關(guān)系研究方程組解的問(wèn)題,向量是手段是工具。這一部分內(nèi)容普遍反映比較難掌握,難掌握的原因主要是比較抽象,而且定理又非常多。這一部分定理要求全部會(huì)證明,意義不在于證明這些定理本身,主要是通過(guò)這些定理的證明體會(huì)線性代數(shù)這門(mén)學(xué)科常用的證明思路和方法,和高等數(shù)學(xué)相比,線性代數(shù)這門(mén)學(xué)科的證明思路是相對(duì)固定的,變化很少,完全可以掌握。
第四章特征值特征向量開(kāi)始,進(jìn)入矩陣對(duì)角化的討論,主要由以下幾個(gè)問(wèn)題構(gòu)成:一是什么樣的矩陣可以相似對(duì)角化?(相似對(duì)角化的充要條件)二是如果矩陣可以相似對(duì)角化,那么通過(guò)什么樣的相似變換可以達(dá)到對(duì)角化的目的?對(duì)角化后的對(duì)角陣又是什么形式呢?于是涉及到可逆矩陣P的求法,對(duì)角陣 的構(gòu)成。由此可以看出,這一部分的編寫(xiě)是一個(gè)倒敘的形式,先去求特征值特征向量,其實(shí)是為求P和 做準(zhǔn)備而已。
第五章二次型理論主要探討實(shí)對(duì)稱(chēng)矩陣的對(duì)角化問(wèn)題,實(shí)對(duì)稱(chēng)矩陣與普通方陣相比有自己特殊之處,在對(duì)實(shí)對(duì)稱(chēng)矩陣進(jìn)行對(duì)角化的過(guò)程中,可以對(duì)可逆矩陣P提出更高的要求,可以要求矩陣是一個(gè)正交矩陣Q,正交矩陣具有良好的運(yùn)算性質(zhì),列向量之間正交且均為單位向量,因此可保證,由此可進(jìn)一步深入討論如何將二次型化為標(biāo)準(zhǔn)型的問(wèn)題。、
總之,線性代數(shù)的學(xué)習(xí)是要求連成片,結(jié)成網(wǎng)的,不能是知識(shí)點(diǎn)的單獨(dú)學(xué)習(xí),各個(gè)點(diǎn)要相互滲透,理清楚結(jié)構(gòu)才能學(xué)好這門(mén)課。學(xué)好這門(mén)課程就能讓我們?cè)诳佳袛?shù)學(xué)中大展拳腳,就離成功又進(jìn)了一步。

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專(zhuān)業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開(kāi)始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無(wú)論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來(lái)了院校專(zhuān)業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門(mén);個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!

點(diǎn)擊右側(cè)咨詢(xún)或直接前往了解更多

考研院校專(zhuān)業(yè)選擇和考研復(fù)習(xí)計(jì)劃
2023備考學(xué)習(xí) 2023線上線下隨時(shí)學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國(guó)各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專(zhuān)業(yè)如何選擇更適合自己的 從就業(yè)說(shuō)考研如何擇專(zhuān)業(yè)?
手把手教你如何選專(zhuān)業(yè)? 高校研究生教育各學(xué)科門(mén)類(lèi)排行榜

跨考考研課程

班型 定向班型 開(kāi)班時(shí)間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢(xún)
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專(zhuān)業(yè)課1對(duì)1+專(zhuān)業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專(zhuān)屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專(zhuān)業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專(zhuān)業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專(zhuān)屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來(lái)源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢(xún)有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來(lái)源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來(lái)源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來(lái)源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來(lái)源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)作者見(jiàn)稿后在兩周內(nèi)速來(lái)電與跨考網(wǎng)聯(lián)系,電話:400-883-2220