2018年考研數(shù)學(xué)復(fù)習(xí)必備知識(shí)點(diǎn):線性代數(shù)
考研數(shù)學(xué)是大部分考研專業(yè)都必考的內(nèi)容,數(shù)學(xué)分值150,是考研復(fù)習(xí)的重點(diǎn)。小編提醒大家:考研數(shù)學(xué)線性代數(shù)是基礎(chǔ)階段應(yīng)該重點(diǎn)把握的。這部分內(nèi)容盡管占的分值并不高,但是對(duì)大部分同學(xué)來說復(fù)習(xí)仍是重點(diǎn)。
一、課程特點(diǎn)
特點(diǎn)一:知識(shí)點(diǎn)比較細(xì)碎。
如矩陣部分涉及到了各種類型的性質(zhì)和關(guān)系,記憶量大而且容易混淆的地方較多。
特點(diǎn)二:知識(shí)點(diǎn)間的聯(lián)系性很強(qiáng)。
這種聯(lián)系不僅僅是指在后面幾章中用到前兩章行列式和矩陣的相關(guān)知識(shí),更重要的是在于不同章節(jié)中各種性質(zhì)、定理、判定法則之間有著相互推導(dǎo)和前后印證的關(guān)系。
復(fù)習(xí)線代時(shí),要做到“融會(huì)貫通”。
“融會(huì)”——設(shè)法找到不同知識(shí)點(diǎn)之間的內(nèi)在相通之處;
“貫通”——掌握前后知識(shí)點(diǎn)之間的順承關(guān)系。
二、行列式與矩陣
第一章《行列式》、第二章《矩陣》是線性代數(shù)中的基礎(chǔ)章節(jié),有必要熟練掌握。
行列式的核心內(nèi)容是求行列式,包括具體行列式的計(jì)算和抽象行列式的計(jì)算,其中具體行列式的計(jì)算又有低階和高階兩種類型;主要方法是應(yīng)用行列式的性質(zhì)及按行\(zhòng)列展開定理化為上下三角行列式求解。對(duì)于抽象行列式的求值,考點(diǎn)不在求行列式,而在于相關(guān)性質(zhì),矩陣部分出題很靈活,頻繁出現(xiàn)的知識(shí)點(diǎn)包括矩陣運(yùn)算的運(yùn)算規(guī)律、運(yùn)算性質(zhì)、矩陣可逆的判定及求逆、矩陣的秩的性質(zhì)、初等矩陣的性質(zhì)等。
三、向量與線性方程組
向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎(chǔ)性章節(jié);后兩章特征值、特征向量、二次型的內(nèi)容則相對(duì)獨(dú)立,可以看作是對(duì)核心內(nèi)容的擴(kuò)展。
向量與線性方程組的內(nèi)容聯(lián)系很密切,很多知識(shí)點(diǎn)相互之間都有或明或暗的相關(guān)性。復(fù)習(xí)這兩部分內(nèi)容最有效的方法就是徹底理順諸多知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,因?yàn)檫@樣做首先能夠保證做到真正意義上的理解,同時(shí)也是熟練掌握和靈活運(yùn)用的前提。
解線性方程組可以看作是出發(fā)點(diǎn)和目標(biāo)。線性方程組(一般式)
還具有兩種形式:(1)矩陣形式,(2)向量形式 。
1)齊次線性方程組與線性相關(guān)、無關(guān)的聯(lián)系
齊次線性方程組 可以直接看出一定有解,因?yàn)楫?dāng)變量都為零時(shí)等式一定成立;印證了向量部分的一條性質(zhì)“零向量可由任何向量線性表示”。
齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當(dāng)齊次線性方程組有唯一零解時(shí),是指等式中的變量只能全為零才能使等式成立,而當(dāng)齊次線性方程組有非零解時(shí),存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關(guān)\無關(guān)的定義也正是由這個(gè)等式出發(fā)的。故向量與線性方程組在此又產(chǎn)生了聯(lián)系:齊次線性方程組 是否有非零解對(duì)應(yīng)于系數(shù)矩陣的列向量組是否線性相關(guān)??梢栽O(shè)想線性相關(guān)\無關(guān)的概念就是為了更好地討論線性方程組問題而提出的。
2)齊次線性方程組的解與秩和極大無關(guān)組的聯(lián)系
同樣可以認(rèn)為秩是為了更好地討論線性相關(guān)和線性無關(guān)而引入的。秩的定義是“極大線性無關(guān)組中的向量個(gè)數(shù)”。經(jīng)過 “秩 → 線性相關(guān)\無關(guān) → 線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關(guān)時(shí),齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個(gè)線性無關(guān)的解向量(基礎(chǔ)解系)線性表示。
3)非齊次線性方程組與線性表示的聯(lián)系
非齊次線性方程組是否有解對(duì)應(yīng)于向量是否可由列向量組線性表示,使等式成立的一組數(shù)就是非齊次線性方程組的解。
四、特征值與特征向量
相對(duì)于前兩章來說,本章不是線性代數(shù)這門課的理論重點(diǎn),但卻是一個(gè)考試重點(diǎn)。其原因是解決相關(guān)題目要用到線代中的大量?jī)?nèi)容——既有行列式、矩陣又有線性方程組和線性相關(guān),“牽一發(fā)而動(dòng)全身”。本章知識(shí)要點(diǎn)如下:
1.特征值和特征向量的定義及計(jì)算方法就是記牢一系列公式和性質(zhì)。
2.相似矩陣及其性質(zhì),需要區(qū)分矩陣的相似、等價(jià)與合同:
3.矩陣可相似對(duì)角化的條件,包括兩個(gè)充要條件和兩個(gè)充分條件。充要條件1是n階矩陣有n個(gè)線性無關(guān)的特征值;充要條件2是任意r重特征根對(duì)應(yīng)有r個(gè)線性無關(guān)的特征向量。
4.實(shí)對(duì)稱矩陣及其相似對(duì)角化,n階實(shí)對(duì)稱矩陣必可正交相似于對(duì)角陣。
五、二次型
本章所講的內(nèi)容從根本上講是第五章《特征值和特征向量》的一個(gè)延伸,因?yàn)榛涡蜑闃?biāo)準(zhǔn)型的核心知識(shí)為“對(duì)于實(shí)對(duì)稱矩陣 存在正交矩陣 使得 可以相似對(duì)角化”,其過程就是上一章相似對(duì)角化在為實(shí)對(duì)稱矩陣時(shí)的應(yīng)用。
本章知識(shí)要點(diǎn)如下:
1.二次型及其矩陣表示。
2.用正交變換化二次型為標(biāo)準(zhǔn)型。
3.正負(fù)定二次型的判斷與證明。
2018的小伙伴,聽說這四海八荒能困住你的不是法術(shù),而是毫無頭緒的考研復(fù)習(xí)!考研界的黃埔軍校—跨考考研立志解決你的考研問題,半年集訓(xùn)適合脫產(chǎn)集中復(fù)習(xí)人群的在職和二戰(zhàn)人群,暑期集訓(xùn)更受大三學(xué)子青睞!考研余下不足200天,希望你的選擇會(huì)帶給你不一樣的人生!領(lǐng)取2018考研半年集訓(xùn)好禮 暑期集訓(xùn)熱招中 報(bào)名享折扣
感恩季給你最有料的 | ||
重點(diǎn)關(guān)注 | 名師原創(chuàng)精品復(fù)習(xí)資料 | 讀懂院校招簡(jiǎn),復(fù)習(xí)不跑偏 |
暑期集訓(xùn)火熱招募中 | 免費(fèi)在線考研視頻 | |
2018考研知識(shí)“養(yǎng)肥”計(jì)劃 | 2018考研時(shí)間安排 | 優(yōu)質(zhì)擇校方案,考研不將就 |
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時(shí)學(xué)習(xí) | 34所自劃線院校考研復(fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國(guó)各招生院校考研調(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2018考研數(shù)學(xué)復(fù)習(xí):線性代數(shù)
2018考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)建議
2018年現(xiàn)階段考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)重點(diǎn)是什么
2018考研數(shù)學(xué)復(fù)習(xí):線性代數(shù)
2018考研數(shù)學(xué)復(fù)習(xí)技巧【線性代數(shù)】
2018考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)經(jīng)驗(yàn)分享
2018考研數(shù)學(xué)線性代數(shù)基礎(chǔ)階復(fù)習(xí)建議
2018年考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)備考建議
2018考研數(shù)學(xué)線性代數(shù)暑期強(qiáng)化復(fù)習(xí)重點(diǎn)及方法
2018年考研數(shù)學(xué)強(qiáng)化復(fù)習(xí):線性代數(shù)重點(diǎn)題型梳理
跨考考研課程
班型 | 定向班型 | 開班時(shí)間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |