2022考研數(shù)學(xué)線性代數(shù):復(fù)習(xí)的32個重要考點

最后更新時間:2021-01-29 16:38:34
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來跨考秋季集訓(xùn)營,幫你尋方法,定方案! 了解一下>>

  22的考研er也該抖抖精神開始復(fù)習(xí)數(shù)學(xué),為以后打好基礎(chǔ)。線性代數(shù)是2022考研數(shù)學(xué)復(fù)習(xí)的重要部分,建議考研數(shù)學(xué)基礎(chǔ)不好的小伙伴早點開始復(fù)習(xí),下面小編整理了2022年考研數(shù)學(xué)線性代數(shù):復(fù)習(xí)的32個重要考點,一起來看看吧。

  一、行列式常考題型

  (1)行列式基本概念;

  (2)低價行列式的計算;

  (3)高階行列式的計算;

  (4)余子式與代數(shù)余子式

  二、矩陣??碱}型

  (1)計算方陣的冪

  (2)與伴隨矩陣相關(guān)聯(lián)的

  (3)有關(guān)初等變換的

  (4)有關(guān)逆矩陣的計算與證明

  (5)解矩陣方程

  (6)矩陣秩的計算和證明

  三、向量??碱}型

  (1)判定向量組的線性相關(guān)性;

  (2)向量組線性相關(guān)性問題的證明;

  (3)向量組的線性表示問題;

  (4)向量組的極大線性無關(guān)組與向量組的秩;

  (5)過度矩陣與向量的坐標(biāo)表示(數(shù)一考生要求、數(shù)二、數(shù)三考生不要求)

  四、線性方程組??碱}型

  (1)涉及線性方程組理論的矩陣證明;

  (2)線性方程組解得結(jié)構(gòu)與性質(zhì);

  (3)齊次線性方程組的基礎(chǔ)解系與通解;

  (4)非齊次線性方程組的通解;

  (5)方程組的公共解。

  五、特征值與特征向量常考題型

  (1)求矩陣的特征值與特征向量;

  (2)特征值與特征向量的定義與性質(zhì);

  (3)非是對稱矩陣的相似對教化;

  (4)是對稱矩陣的對教化;

  (5)求矩陣的冪矩陣;

  (6)根據(jù)特征值與特征向量反求矩陣;

  (7)有關(guān)特征值與特征向量的證明

  六、二次型??碱}型

  (1)二次型的概念和性質(zhì);

  (2)化二次型為標(biāo)準(zhǔn)型;

  (3)含參數(shù)的二次型問題;

  (4)正定二次型的判別與證明問題;

  (5)矩陣的相似與合同

  (注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!

點擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計劃
2023備考學(xué)習(xí) 2023線上線下隨時學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國各招生院校考研復(fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開班時間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220