2022考研數(shù)學線性代數(shù)方程組需掌握的知識點

最后更新時間:2021-02-23 17:17:54
輔導課程:暑期集訓 在線咨詢
復習緊張,焦頭爛額?逆風輕襲,來跨考秋季集訓營,幫你尋方法,定方案! 了解一下>>

  春節(jié)假期已經(jīng)結束,22的考研er也該抖抖精神開始復習數(shù)學,為以后打好基礎。線性代數(shù)是2022考研數(shù)學復習的重要部分,建議考研數(shù)學基礎不好的小伙伴早點開始復習,下面小編整理了2022年考研數(shù)學線性代數(shù)方程組??贾R點,一起來看看吧。

  2022年考研數(shù)學線性代數(shù):線代方程組??贾R點

  1、非齊次線性方程組解的結構及通解;

  2、齊次線性方程組的基礎解系、通解及解空間的概念,齊次線性方程組的基礎解系和通解的求法;

  3、齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件;

  4、矩陣初等變換的概念,初等矩陣的性質,矩陣等價的概念,矩陣的秩的概念,用初等變換求矩陣的秩和逆矩陣;

  5、向量、向量的線性組合與線性表示的概念;

  6、用初等行變換求解線性方程組的方法;

  7、基變換和坐標變換公式,過渡矩陣。(數(shù)一)

  8、向量空間、子空間、基底、維數(shù)、坐標等概念;(數(shù)一)

  9、向量組線性相關、線性無關的概念,向量組線性相關、線性無關的有關性質及判別法;

  10、向量組的極大線性無關組和向量組的秩的概念和求解;

  11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關系;

  矩陣的特征值特征向量與二次型相當于是求解線性方程組的應用,出題比較靈活,有些題目技巧性較強,復習起來也是比較有意思的一章。在考試中也是比較容易出大題的內(nèi)容。

  其中我們應當掌握:

  1、規(guī)范正交基、正交矩陣的概念以及它們的性質;

  2、內(nèi)積的概念,線性無關向量組正交規(guī)范化的施密特(Schmidt)方法;

  3、矩陣的特征值和特征向量的概念及性質,求矩陣的特征值和特征向量;

  4、實對稱矩陣的特征值和特征向量的性質;

  5、相似矩陣的概念、性質,矩陣可相似對角化的充分必要條件,將矩陣化為相似對角矩陣的方法;

  6、二次型及其矩陣表示,二次型秩的概念,合同變換與合同矩陣的概念,二次型的標準形、規(guī)范形的概念以及慣性定理;

  7、正定二次型、正定矩陣的概念和判別法。

  8、正交變換化二次型為標準形,配方法化二次型為標準形。

  (注:本文來自網(wǎng)絡,如有侵權,請聯(lián)系刪除)

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班)
2023集訓暢學 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權均屬北京尚學碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權不得轉載、鏈接、轉帖或以其他任何方式復制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉載稿,本網(wǎng)轉載僅基于傳遞更多信息之目的,并不意味著再通轉載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權等法律責任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責任。

③如本網(wǎng)轉載稿涉及版權等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220