2022考研數(shù)學線性代數(shù)方程組需掌握的知識點
春節(jié)假期已經(jīng)結束,22的考研er也該抖抖精神開始復習數(shù)學,為以后打好基礎。線性代數(shù)是2022考研數(shù)學復習的重要部分,建議考研數(shù)學基礎不好的小伙伴早點開始復習,下面小編整理了2022年考研數(shù)學線性代數(shù)方程組??贾R點,一起來看看吧。
2022年考研數(shù)學線性代數(shù):線代方程組??贾R點
1、非齊次線性方程組解的結構及通解;
2、齊次線性方程組的基礎解系、通解及解空間的概念,齊次線性方程組的基礎解系和通解的求法;
3、齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件;
4、矩陣初等變換的概念,初等矩陣的性質,矩陣等價的概念,矩陣的秩的概念,用初等變換求矩陣的秩和逆矩陣;
5、向量、向量的線性組合與線性表示的概念;
6、用初等行變換求解線性方程組的方法;
7、基變換和坐標變換公式,過渡矩陣。(數(shù)一)
8、向量空間、子空間、基底、維數(shù)、坐標等概念;(數(shù)一)
9、向量組線性相關、線性無關的概念,向量組線性相關、線性無關的有關性質及判別法;
10、向量組的極大線性無關組和向量組的秩的概念和求解;
11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關系;
矩陣的特征值特征向量與二次型相當于是求解線性方程組的應用,出題比較靈活,有些題目技巧性較強,復習起來也是比較有意思的一章。在考試中也是比較容易出大題的內(nèi)容。
其中我們應當掌握:
1、規(guī)范正交基、正交矩陣的概念以及它們的性質;
2、內(nèi)積的概念,線性無關向量組正交規(guī)范化的施密特(Schmidt)方法;
3、矩陣的特征值和特征向量的概念及性質,求矩陣的特征值和特征向量;
4、實對稱矩陣的特征值和特征向量的性質;
5、相似矩陣的概念、性質,矩陣可相似對角化的充分必要條件,將矩陣化為相似對角矩陣的方法;
6、二次型及其矩陣表示,二次型秩的概念,合同變換與合同矩陣的概念,二次型的標準形、規(guī)范形的概念以及慣性定理;
7、正定二次型、正定矩陣的概念和判別法。
8、正交變換化二次型為標準形,配方法化二次型為標準形。
(注:本文來自網(wǎng)絡,如有侵權,請聯(lián)系刪除)
2022考研初復試已經(jīng)接近尾聲,考研學子全面進入2023屆備考,跨考為23考研的考生準備了10大課包全程準備、全年復習備考計劃、目標院校專業(yè)輔導、全真復試模擬練習和全程針對性指導;2023考研的小伙伴針也已經(jīng)開始擇校和復習了,跨考考研暢學5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復習,暑假集訓營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
考研院校專業(yè)選擇和考研復習計劃 | |||
2023備考學習 | 2023線上線下隨時學習 | 34所自劃線院??佳袕驮嚪謹?shù)線匯總 | |
2022考研復試最全信息整理 | 全國各招生院??佳袕驮嚪謹?shù)線匯總 | ||
2023全日制封閉訓練 | 全國各招生院??佳姓{劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分數(shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學科門類排行榜 |
相關推薦
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標準班 | 課程介紹 | 咨詢 |
秋季集訓 | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班) | |
2023集訓暢學 | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務 |