2021考研高數(shù)精選考察知識點 建議收藏!

最后更新時間:2020-08-26 18:08:56
輔導課程:暑期集訓 在線咨詢
復習緊張,焦頭爛額?逆風輕襲,來跨考秋季集訓營,幫你尋方法,定方案! 了解一下>>

  高數(shù)是2021考研數(shù)學復習的重要部分,為了幫助大家更好的復習,小編結合考試大綱和歷年的要求,梳理了考研數(shù)學高等數(shù)學知識點,以便于考生系統(tǒng)把握。以下是詳細內(nèi)容,一起了解一下。

  函數(shù)、極限與連續(xù)

  求分段函數(shù)的復合函數(shù);

  求極限或已知極限確定原式中的常數(shù);

  討論函數(shù)的連續(xù)性,判斷間斷點的類型;

  無窮小階的比較;

  討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù),或確定方程在給定區(qū)間上有無實根。

  這一部分更多的會以選擇題,填空題,或者作為構成大題的一個部件來考核,復習的關鍵是要對這些概念有本質(zhì)的理解,在此基礎上找習題強化。

  一元函數(shù)微分學

  求給定函數(shù)的導數(shù)與微分(包括高階導數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導,特別是分段函數(shù)和帶有絕對值的函數(shù)可導性的討論;

  利用洛比達法則求不定式極限;

  討論函數(shù)極值,方程的根,證明函數(shù)不等式;

  利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如“證明在開區(qū)間內(nèi)至少存在一點滿足……”,此類問題證明經(jīng)常需要構造輔助函數(shù);

  幾何、物理、經(jīng)濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數(shù)和約束條件,判定所討論區(qū)間;

  利用導數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。

  一元函數(shù)積分學

  計算題:計算不定積分、定積分及廣義積分;

  關于變上限積分的題:如求導、求極限等;

  有關積分中值定理和積分性質(zhì)的證明題;

  定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,壓力,引力,變力作功等;

  綜合性試題。

  向量代數(shù)和空間解析幾何

  計算題:求向量的數(shù)量積,向量積及混合積;

  求直線方程,平面方程;

  判定平面與直線間平行、垂直的關系,求夾角;

  建立旋轉面的方程;

  與多元函數(shù)微分學在幾何上的應用或與線性代數(shù)相關聯(lián)的題目。

  這一部分為數(shù)一同學考查,難度在考研數(shù)學中應該是相對簡單的,找輔導書上的習題練習,需要做到快速正確的求解。

  多元函數(shù)的微分學

  判定一個二元函數(shù)在一點是否連續(xù),偏導數(shù)是否存在、是否可微,偏導數(shù)是否連續(xù);

  求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導數(shù),求隱函數(shù)的一階、二階偏導數(shù);

  求二元、三元函數(shù)的方向?qū)?shù)和梯度;

  求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學與前面向量代數(shù)與空間解析幾何的綜合題,應結合起來復習;

  多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟上的應用題;求一個二元連續(xù)函數(shù)在一個有界平面區(qū)域上的最大值和最小值。這部分應用題多要用到其他領域的知識,考生在復習時要引起注意。

  這部分應用題多要用到其他領域的知識,在復習時要引起注意,可以找一些題目做做,找找這類題目的感覺。

  多元函數(shù)的積分學

  二重、三重積分在各種坐標下的計算,累次積分交換次序;

  第一型曲線積分、曲面積分計算;

  第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;

  第二型(對坐標)曲面積分的計算,高斯公式及其應用;

  梯度、散度、旋度的綜合計算;

  重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。數(shù)學一考生對這部分內(nèi)容和題型要引起足夠的重視。

  無窮級數(shù)

  判定數(shù)項級數(shù)的收斂、發(fā)散、絕對收斂、條件收斂;

  求冪級數(shù)的收斂半徑,收斂域;

  求冪級數(shù)的和函數(shù)或求數(shù)項級數(shù)的和;

  將函數(shù)展開為冪級數(shù)(包括寫出收斂域);

  將函數(shù)展開為傅立葉級數(shù),或已給出傅立葉級數(shù),要確定其在某點的和(通常要用狄里克雷定理);

  綜合證明題。

  微分方程

  求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當然,有些方程不直接屬于我們學過的類型,此時常用的方法是將x與y對調(diào)或作適當?shù)淖兞看鷵Q,把原方程化為我們學過的類型;

  求解可降階方程;

  求線性常系數(shù)齊次和非齊次方程的特解或通解;

  根據(jù)實際問題或給定的條件建立微分方程并求解;

  (注:本文來自網(wǎng)絡,如有侵權,請聯(lián)系刪除)

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班)
2023集訓暢學 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權均屬北京尚學碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權不得轉載、鏈接、轉帖或以其他任何方式復制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉載稿,本網(wǎng)轉載僅基于傳遞更多信息之目的,并不意味著再通轉載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權等法律責任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責任。

③如本網(wǎng)轉載稿涉及版權等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220