2020考研高等數(shù)學(xué)必考知識(shí)點(diǎn)之:無(wú)窮級(jí)數(shù)

最后更新時(shí)間:2019-11-15 11:36:49
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來(lái)跨考秋季集訓(xùn)營(yíng),幫你尋方法,定方案! 了解一下>>

  2020考研臨近,不少同學(xué)因?yàn)閿?shù)學(xué)差而對(duì)考研望而卻步,而高數(shù)又是考研數(shù)學(xué)中的重中之重,考研數(shù)學(xué)一高等數(shù)學(xué)部分占比56%,考研數(shù)學(xué)二高等數(shù)學(xué)部分占比786%、考研數(shù)學(xué)三高等數(shù)學(xué)部分占比56%,所以復(fù)習(xí)沖刺階段考研生們要將大部分精力放在考點(diǎn)的復(fù)習(xí)上。小編整理了2020考研數(shù)學(xué)高等數(shù)學(xué)必考知識(shí)點(diǎn),供大家參考。

  無(wú)窮級(jí)數(shù)

  ①掌握級(jí)數(shù)的基本性質(zhì)及其級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)與p級(jí)數(shù)的收斂性;掌握比值審斂法,會(huì)用正項(xiàng)級(jí)數(shù)的比較與根值審斂法。

  ②會(huì)用交錯(cuò)級(jí)數(shù)的萊布尼茲定理,了解絕對(duì)收斂和條件收斂的概念及它們的關(guān)系。 ③會(huì)求冪級(jí)數(shù)的和函數(shù)以及數(shù)項(xiàng)級(jí)數(shù)的和,掌握冪級(jí)數(shù)收斂域的求法.

 ?、苷莆誩x、sinx、cosx、ln(1+x),(1+x)α的馬克勞林展開(kāi)式,會(huì)用它們將簡(jiǎn)單函數(shù)作間接展開(kāi);會(huì)將定義在[-L,L]上的函數(shù)展開(kāi)為傅立葉級(jí)數(shù),會(huì)將定義在上的函數(shù)展開(kāi)為正弦級(jí)數(shù)和余弦函數(shù)。重點(diǎn)是數(shù)項(xiàng)級(jí)數(shù)的概念與性質(zhì),正項(xiàng)級(jí)數(shù)的審斂法,交錯(cuò)級(jí)數(shù)及其審斂法,絕對(duì)收斂與條件收斂的概念。冪級(jí)數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級(jí)數(shù)。難點(diǎn)是求冪級(jí)數(shù)的和函數(shù),將函數(shù)展成冪級(jí)數(shù)、傅立葉級(jí)數(shù)。 8、常微分方程

  ①了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。

 ?、跁?huì)用降階法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)類的方程;理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。

 ?、壅莆斩A常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。

  ④會(huì)解包含兩個(gè)未知函數(shù)的一階常系數(shù)線性微分方程組。重點(diǎn)是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點(diǎn)是由實(shí)際問(wèn)題建立微分方程及確定定解條件。

  (注:本文來(lái)自網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系刪除)

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開(kāi)始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無(wú)論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來(lái)了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!

點(diǎn)擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃
2023備考學(xué)習(xí) 2023線上線下隨時(shí)學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國(guó)各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說(shuō)考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開(kāi)班時(shí)間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來(lái)源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來(lái)源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來(lái)源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來(lái)源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來(lái)源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)作者見(jiàn)稿后在兩周內(nèi)速來(lái)電與跨考網(wǎng)聯(lián)系,電話:400-883-2220