2005年碩士研究生考試大綱數(shù)學二_跨考網(wǎng)

最后更新時間:2008-02-22 23:37:31
輔導課程:暑期集訓 在線咨詢
復習緊張,焦頭爛額?逆風輕襲,來跨考秋季集訓營,幫你尋方法,定方案! 了解一下>>

  考試科目

  高等數(shù)學、線性代數(shù)

  高等數(shù)學

  一、函數(shù)、極限、連續(xù)

  考試內容

  函數(shù)的概念及表示法函數(shù)的有界性、單調性、周期性和奇偶性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質及其圖形初等函數(shù)簡單應用問題的函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質函數(shù)的左極限與右極限無窮小和無窮大的概念及其關系無窮小的性質及無窮小的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:

  函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應用問題中的函數(shù)關系式。

  2.了解函數(shù)的有界性、單調性、周期性和奇偶性。

  3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。

  4.掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的基本概念。

  5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關系。

  6.掌握極限的性質及四則運算法則

  7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。

  8.理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。

  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型。

  10.了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質。

  二、一元函數(shù)微分學

  考試內容。

  導數(shù)和微分的概念導數(shù)的幾何意義和物理意義函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線和法線基本初等函數(shù)的導數(shù)導數(shù)和微分的四則運算復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導數(shù)一階微分形式的不變性微分中值定理洛必達(L‘Hospital)法則函數(shù)的極值函數(shù)單調性的判別函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)最大值和最小值弧微分曲率的概念曲率半徑

  考試要求

  1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系。

  2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。

  3.了解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù)。

  4.會求分段函數(shù)的一階、二階導數(shù)。

  5.會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)。

  6.理解并會用羅爾定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理。

  7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應用。

  8.會用導數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。

  9.掌握用洛必達法則求未定式極限的方法。

  10.了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。

  三、一元函數(shù)積分學

  考試內容

  原函數(shù)和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數(shù)及其導數(shù)牛頓一萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分廣義積分定積分的應用

  考試要求

  1.理解原函數(shù)概念,理解不定積分和定積分的概念。

  2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法。

  3.會求有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的積分。

  4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓一萊布尼茨公式。

  5.了解廣義積分的概念,會計算廣義積分。

  6.了解定積分的近似計算法。

  7.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。

  四、多元函數(shù)微積分學

  考試內容

  多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質多元函數(shù)偏導數(shù)的概念與計算多元復合函數(shù)、隱函數(shù)求導法二階偏導數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算

  考試要求

  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。

  2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質。

  3.了解多元函數(shù)偏導數(shù)與全微分的概念,會求多元復合函數(shù)一階、二階偏導數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù)。

  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,會求解一些簡單的應用題。

  5.了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法。

  五、常微分方程

  考試內容

  常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程微分方程簡單應用

  考試要求

  1.了解微分方程及其解、階、通解、初始條件和特解等概念。

  2.掌握變量可分離的方程及一階線性微分方程的解法,會解齊次微分方程。

  3.會用降階法解下列方程:y(n)=f(x),y‘’= f(x,y‘)y=f’‘(y,y’)。

  4.理解二階線性微分方程解的性質及解的結構定理。

  5.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。

  6.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。

  7.會用微分方程解決一些簡單的應用問題。

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班)
2023集訓暢學 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權均屬北京尚學碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權不得轉載、鏈接、轉帖或以其他任何方式復制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉載稿,本網(wǎng)轉載僅基于傳遞更多信息之目的,并不意味著再通轉載稿的觀點或證實其內容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權等法律責任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責任。

③如本網(wǎng)轉載稿涉及版權等問題,請作者見稿后在兩周內速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220