2018考研數(shù)學(xué)線代特征值特征向量
數(shù)學(xué)復(fù)習(xí):2018考研數(shù)學(xué)復(fù)習(xí)指導(dǎo)攻略(全)
考研數(shù)學(xué)在考試中所占比例比較大,是考試復(fù)習(xí)的重點內(nèi)容,2018年考研的同學(xué)一定要對線性代數(shù)這部分知識必須“吃懂”、“吃透”,以下是跨考網(wǎng)老師為大家整理的:2018考研數(shù)學(xué)線代特征值特征向量,希望對大家的復(fù)習(xí)有所幫助。
一、矩陣的特征值與特征向量問題
1.矩陣的特征值與特征向量的概念理解以及計算問題
這一部分要求會求給定矩陣的特征值與特征向量,??嫉念}型有數(shù)值型矩陣的特征值與特征向量的計算和抽象型矩陣的特征值與特征向量的計算。若給定的矩陣是數(shù)值型的矩陣,則一般的方法是通過求矩陣特征方程的根得到該矩陣的特征值,然后再通過求解齊次線性方程組的非零解得到對應(yīng)特征值的特征向量。若給定的矩陣是抽象型的,則在求特征值與特征向量的時候常用的方法是通過定義,但此時需要考慮的是特征值與特征向量的性質(zhì)以及應(yīng)用。
2.矩陣(方陣)的相似對角化問題
這里要求掌握一般矩陣相似對角化的條件,會判斷給定的矩陣是否可以相似對角化,另外還要會求矩陣相似對角化的計算問題,會求可逆陣以及對角陣。尤其需要掌握的是通過相似的結(jié)論,反推一些參數(shù),比如相似可以得到:秩、行列式、特征值、跡等相等,解題中往往是通過這些量先得到一些參數(shù)。事實上,矩陣相似對角化之后還有一些應(yīng)用,主要體現(xiàn)在矩陣行列式的計算或者求矩陣的方冪上,這些應(yīng)用在歷年真題中都有不同的體現(xiàn)。
3.實對稱矩陣的正交相似對角化問題
其實質(zhì)還是矩陣的相似對角化問題,與2不同的是求得的可逆陣為正交陣。這里要求考生除了掌握實對稱矩陣的正交相似對角化外,還要掌握實對稱矩陣的特征值與特征向量的性質(zhì),在考試的時候會經(jīng)常用到這些考點的。這塊的知識出題比較靈活,可直接出題,即給定一個實對稱矩陣A,讓求正交陣使得該矩陣正交相似于對角陣;也可以根據(jù)矩陣A的特征值、特征向量來確定矩陣A中的參數(shù)或者確定矩陣A;另外由于實對稱矩陣不同特征值的特征向量是相互正交的,這樣還可以由已知特征值的特征向量確定出對應(yīng)的特征向量,從而確定出矩陣A.最重要的是,掌握了實對稱矩陣的正交相似對角化就相當(dāng)于解決了實二次型的標(biāo)準(zhǔn)化問題。
二、二次型
1.二次型的標(biāo)準(zhǔn)化問題
二次型的標(biāo)準(zhǔn)化問題與矩陣的對角化問題緊密相連,因此化二次型為標(biāo)準(zhǔn)形的問題就轉(zhuǎn)化成了實對稱矩陣的相似對角化問題?;涡蜑闃?biāo)準(zhǔn)形有兩種方法:一是正交變換法;二是配方法。從歷年考題來看,利用正交變化法化二次型為標(biāo)準(zhǔn)形是考研線性代數(shù)考查的重要方向,但是其實質(zhì)就是實對稱矩陣的正交相似對角化問題,也就是說實二次型的標(biāo)準(zhǔn)化問題與實對稱矩陣的正交相似對角化問題是同一問題的兩種不同的提法,并且這兩種不同的提法在歷年考研真題的大題中是交替出現(xiàn)的,因此掌握了實對稱矩陣的正交相似對角化那么實二次型的標(biāo)準(zhǔn)化問題也就迎刃而解了。另外,在沒有其他要求的情況下,利用配方法得到標(biāo)準(zhǔn)形可能更方便一些。本章節(jié)的內(nèi)容除了會以大題的形式出現(xiàn)外,二次型的矩陣表示、二次型的秩和標(biāo)準(zhǔn)形等概念、二次型的規(guī)范形和慣性定理也是填空題、選擇題中不可或缺的一部分。
2.二次型的正定性判斷
此處的考點主要出現(xiàn)在填空題或者選擇題中,一般考查的有兩種形式的二次型:一是具體的數(shù)值型二次型;二是抽象的二次型。對于具體的數(shù)值型二次型來說,一般可通過判斷其順序主子式是否全部大于零來判別二次型是否為正定二次型;而抽象的二次型的正定性判斷可以通過利用其標(biāo)準(zhǔn)形、規(guī)范形中的系數(shù)是否都大于0,或者特征值是否都大于0等得到證明,當(dāng)然二次型的正定性判斷問題的順利解決是建立在熟悉二次型正定有關(guān)的充分條件和必要條件的基礎(chǔ)之上的
通過上面的大致梳理,同學(xué)們應(yīng)該基本上了解了這兩個章節(jié)的出題思路,在復(fù)習(xí)過程中要有針對性的復(fù)習(xí),不要鉆牛角尖,比如去證明一下為什么相似可以得到跡相等,為什么合同的充要條件是順序主子式大于零等,這就屬于本末倒置拉。
小編說:有事沒事考個研,現(xiàn)在投資自己,10年之后就不會掙扎在5k左右的工資,不會被訓(xùn)練的為不到1k的調(diào)薪就覺得應(yīng)該歡呼,不會看著年輕人如何時間自主的文章而興嘆,也不會將出國游的計劃一再被擱置...沒有出社會的人總覺得工作很容易,月薪過萬就是應(yīng)該,可骨感的現(xiàn)實告訴你,高學(xué)歷的人往往更容易更快的實現(xiàn)月薪過萬??!改變,就從你加入秋季集訓(xùn)營開始!2018考研大綱發(fā)布 新增考點名師解讀 取經(jīng)明星學(xué)長 預(yù)約免費試聽
秋季提升需注意 | ||
重點關(guān)注 | 金九銀十 精準(zhǔn)擇校 | 讀懂院校招簡,復(fù)習(xí)不跑偏 |
秋季集訓(xùn)火熱招募中 | 考研名師帶著走 視頻免費666 | |
2018考研知識“秋季提升”大作戰(zhàn) | 不得不知的考研大綱解讀 | 2018年考研報名注意事項問答專欄 |
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復(fù)習(xí)計劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院校考研復(fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院校考研調(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |