2020考研沖刺線性代數(shù)重點(diǎn):齊不齊線性方程組
2020考研初試剩下幾天時間了,在接下來的復(fù)習(xí)中同學(xué)們要根據(jù)自己的實(shí)際情況開展合理高效的復(fù)習(xí)計劃,千萬不能夠掉以輕心。為幫助各位考研考生能更好的備戰(zhàn)考研數(shù)學(xué),下面是小編整理的2020考研線性代數(shù)的考察重點(diǎn),齊不齊線性方程組,希望對大家有所幫助。
齊不齊線性方程組
1、齊次線性方程組有無零解和非齊次線性方程組是否有解的判定。
對于齊次線性方程組,當(dāng)方程組的方程個數(shù)和未知量的個數(shù)不等時,可以按照系數(shù)矩陣的秩和未知量個數(shù)的大小關(guān)系來判定;
還可以利用系數(shù)矩陣的列向量組是否相關(guān)來判定;當(dāng)方程組的方程個數(shù)和未知量個數(shù)相同時,可以利用系數(shù)行列式與零的大小關(guān)系來判定,還可以利用系數(shù)矩陣有無零特征值來判定;
對于非齊次線性方程組,可以利用系數(shù)矩陣的秩和增廣矩陣的秩是否相等即有關(guān)矛盾方程來判定;
還可以從一個向量可否由一向量組線性表出來判定;當(dāng)方程個數(shù)和未知量個數(shù)相等時,可以利用系數(shù)行列式是否為零來判定非齊次線性方程組的唯一解情況;今年的考題就體現(xiàn)了這種思想。
2、齊次線性方程組的非零解的結(jié)構(gòu)和非齊次線性方程組解的的無窮多解的結(jié)構(gòu)問題。
如果齊次線性方程組有無窮多個非零解時,其通解是由其基礎(chǔ)解系來表示的;如果非齊次線性方程組有無窮多解時,其通解是由對應(yīng)的齊次線性方程組和通解加本身一個特解所構(gòu)成。
3、齊次線性方程組的基礎(chǔ)解系的求解與證明。
利用系數(shù)矩陣的極大線性無關(guān)組的內(nèi)容進(jìn)行分析。
4、齊次(非齊次)線性方程組的求解(含對參數(shù)取值的討論)。
如果方程組的方程個數(shù)和未知量個數(shù)不相等時,只能對其系數(shù)矩陣或增廣矩陣進(jìn)行初等行變換,化為階梯形矩陣來進(jìn)行討論;如果方程組的方程個數(shù)和未知量個數(shù)相同時,初等行變換和行列式可以結(jié)合起來一起進(jìn)行分析和討論。
5、兩個方程組的公共解、通解問題。
這部分有固定解法,考生要多加練習(xí)。
由于這部分常以大題出現(xiàn),分值較高,需要考生提高警惕,在理解的基礎(chǔ)上多做題。
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點(diǎn)入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院校考研復(fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院校考研調(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |