2021考研數(shù)學(xué):高數(shù)38個高頻知識點匯總

最后更新時間:2020-06-23 11:55:32
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來跨考秋季集訓(xùn)營,幫你尋方法,定方案! 了解一下>>

  考研數(shù)學(xué)在考試中所占比例比較大,是考試復(fù)習(xí)的重點內(nèi)容,考研數(shù)學(xué)對于很多同學(xué)來說都是一個“老大難”,尤其是高等數(shù)學(xué)這一部分,越是覺得困難,我們越要學(xué)會攻克。為此,小編整理了2021考研數(shù)學(xué)高數(shù)考的38個知識點,希望對大家有所幫助。

  一、函數(shù)極限連續(xù)

  1、正確理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。

  2、理解極限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限。

  3、理解函數(shù)連續(xù)性的概念,會判別函數(shù)間斷點的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最.大值、最小值定理和介值定理),并會應(yīng)用這些性質(zhì)。

  重點是數(shù)列極限與函數(shù)極限的概念,兩個重要的極限:lim(sinx/x)=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

  二、一元函數(shù)微分學(xué)

  1、理解導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。

  2、掌握導(dǎo)數(shù)的四則運算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。

  3、理解并會用羅爾中值定理,拉格朗日中值定理,了解并會用柯西中值定理。

  4、理解函數(shù)極值的概念,掌握函數(shù)最.大值和最小值的求法及簡單應(yīng)用,會用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點,會求函數(shù)圖形水平鉛直和斜漸近線。

  5、了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。

  6、掌握用羅塔法則求未定式極限的方法,重點是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。

  羅塔法則函數(shù)的極值和最.大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點的求法。難點是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計算。

  三、一元函數(shù)積分學(xué)

  1、理解原函數(shù)和不定積分和定積分的概念。

  2、掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。

  3、會求有理函數(shù)、三角函數(shù)和簡單無理函數(shù)的積分。

  4、理解變上限積分定義的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。

  5、了解廣義積分的概念并會計算廣義積分。

  6、掌握用定積分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等)。

  重點是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計算及應(yīng)用。難點是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

  四、向量代數(shù)與空間解析幾何

  1、理解向量的概念及其表示。

  2、掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件掌握單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達式以及用坐標(biāo)表達式進行向量運算的方法。

  3、掌握平面方程和直線方程及其求法,會利用平面直線的相互關(guān)系解決有關(guān)問題。

  4、理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

  5、了解空間曲線的參數(shù)方程和一般方程了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。

  五、多元函數(shù)微分學(xué)

  1、了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。

  2、理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分。

  3、理解方向?qū)?shù)與梯度的概念并掌握其計算方法。

  4、掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,會求隱函數(shù)的偏導(dǎo)數(shù)。

  5、了解曲線的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求多元函數(shù)的最.大值和最小值及一些簡單的應(yīng)用問題。

  重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全微分的概念及計算復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度的概念及其計算。

  空間曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。難點是多元復(fù)合函數(shù)的求導(dǎo)法,二函數(shù)的泰勒公式。

  六、多元函數(shù)積分學(xué)

  1、理解二重積分與三重積分的概念,了解重積分的性質(zhì)。

  2、掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計算方法,會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))。

  3、理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系掌握計算兩類曲線積分的方法掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件。

  4、了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法。

  5、會用重積分、曲線積分和曲面積分求一些幾何量和物理量。重點是利用直角坐標(biāo)、極坐標(biāo)計算二重積分。利用直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)計算三重積分。

  兩類曲線積分的概念、性質(zhì)及計算,格林公式。兩類曲面積分的概念、性質(zhì)及計算,高斯公式。難點是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計算。第二類曲面積分與斯托克斯公式。

  七、無窮級數(shù)

  1、掌握級數(shù)的基本性質(zhì)及其級數(shù)收斂的要條件,掌握幾何級數(shù)與p級數(shù)的收斂性掌握比值審斂法,會用正項級數(shù)的比較與根值審斂法。

  2、會用交錯級數(shù)的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關(guān)系。

  3、會求冪級數(shù)的和函數(shù)以及數(shù)項級數(shù)的和,掌握冪級數(shù)收斂域的求法。

  4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的馬克勞林展開式,會用它們將簡單函數(shù)作間接展開會將定義在[-L,L]上的函數(shù)展開為傅立葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)和余弦函數(shù)。

  重點是數(shù)項級數(shù)的概念與性質(zhì),正項級數(shù)的審斂法,交錯級數(shù)及其審斂法,絕對收斂與條件收斂的概念。冪級數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級數(shù)。難點是求冪級數(shù)的和函數(shù),將函數(shù)展成冪級數(shù)、傅立葉級數(shù)。

  八、常微分方程

  1、了解微分方程及其解、階、通解、初始條件和特解等概念掌握變量可分離方程及一階線性方程的解法。

  2、會用降階法解y(n)=f(x),y&Prime=f(x,y),y&Prime=f(y,y')類的方程理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。

  3、掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。

  4、會解包含兩個未知函數(shù)的一階常系數(shù)線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。

  (注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!

點擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計劃
2023備考學(xué)習(xí) 2023線上線下隨時學(xué)習(xí) 34所自劃線院校考研復(fù)試分數(shù)線匯總
2022考研復(fù)試最全信息整理 全國各招生院??佳袕?fù)試分數(shù)線匯總
2023全日制封閉訓(xùn)練 全國各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分數(shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開班時間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權(quán)等法律責(zé)任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220