2020考研數(shù)學(xué):高數(shù)必備的微積分復(fù)習(xí)小結(jié)
作為考研課程中的公共課程,數(shù)學(xué)在其中起著至關(guān)重要的作用。高等數(shù)學(xué)在某種程度上是很多同學(xué)的老大難,往年考生的得分不是很理想,大家要重視起來。關(guān)于高等數(shù)學(xué)復(fù)習(xí),下面小編整理了2020考研高等數(shù)學(xué)微積分復(fù)習(xí)小結(jié),一起來看看吧。
本章的重點內(nèi)容是:
一、多元函數(shù)(主要是二元、三元)的偏導(dǎo)數(shù)和全微分概念;
二、偏導(dǎo)數(shù)和全微分的計算,尤其是求復(fù)合函數(shù)的二階偏導(dǎo)數(shù)及隱函數(shù)的偏導(dǎo)數(shù);
三、方向?qū)?shù)和梯度(只對數(shù)學(xué)一要求);
四、多元函數(shù)微分在幾何上的應(yīng)用(只對數(shù)學(xué)一要求);
五、多元函數(shù)的極值和條件極值。
本章的常見題型有:
1.求二元、三元函數(shù)的偏導(dǎo)數(shù)、全微分。
2.求復(fù)全函數(shù)的二階偏導(dǎo)數(shù);隱函數(shù)的一階、二階偏導(dǎo)數(shù)。
3.求二元、三元函數(shù)的方向?qū)?shù)和梯度。
4.求空間曲線的切線與法平面方程,求曲面的切平面和法線方程。
5.多元函數(shù)的極值在幾何、物理與經(jīng)濟上的應(yīng)用題。
第4類題型,是多元函數(shù)的微分學(xué)與前一章向量代數(shù)與空間解析幾何的綜合題,應(yīng)結(jié)合起來復(fù)習(xí)。
極值應(yīng)用題多要用到其他領(lǐng)域的知識,特別是在經(jīng)濟學(xué)上的應(yīng)用涉及到經(jīng)濟學(xué)上的一些概念和規(guī)律,讀者在復(fù)習(xí)時要引起注意。一元函數(shù)微分學(xué)在微積分中占有極重要的位置,內(nèi)容多,影響深遠(yuǎn),在后面絕大多數(shù)章節(jié)要涉及到它。
本章內(nèi)容歸納起來,有四大部分:
1.概念部分,重點有導(dǎo)數(shù)和微分的定義,特別要會利用導(dǎo)數(shù)定義講座分段函數(shù)在分界點的可導(dǎo)性,高階導(dǎo)數(shù),可導(dǎo)與連續(xù)的關(guān)系;
2.運算部分,重點是基本初等函的導(dǎo)數(shù)、微分公式,四則運算的導(dǎo)數(shù)、微分公式以及反函數(shù)、隱函數(shù)和由參數(shù)方程確定的函數(shù)的求導(dǎo)公式等;
3.理論部分,重點是羅爾定理,拉格朗日中值定理,柯西中值定理;
4.應(yīng)用部分,重點是利用導(dǎo)數(shù)研究函數(shù)的性態(tài)(包括函數(shù)的單調(diào)性與極值,函數(shù)圖形的凹凸性與拐點,漸近線),最值應(yīng)用題,利用洛必達(dá)法則求極限,以及導(dǎo)數(shù)在經(jīng)濟領(lǐng)域的應(yīng)用,如"彈性"、"邊際"等等。
常見題型有:
1.求給定函數(shù)的導(dǎo)數(shù)或微分(包括高階段導(dǎo)數(shù)),包括隱函數(shù)和由參數(shù)方程
確定的函數(shù)求導(dǎo)。
2.利用羅爾定理,拉格朗定理,拉格朗日中值定理,柯西中值定理證明有關(guān)命題和不等式,如"證明在開區(qū)間至少存在一點滿足……",或討論方程在給定區(qū)間內(nèi)的根的個數(shù)等。
此類題的證明,經(jīng)常要構(gòu)造輔助函數(shù),而輔助函數(shù)的構(gòu)造技巧性較強,要求讀者既能從題目所給條件進(jìn)行分析推導(dǎo)逐步引出所需的輔助函數(shù),也能從所需證明的結(jié)論(或其變形)出發(fā)"遞推"出所要構(gòu)造的輔函數(shù),此外,在證明中還經(jīng)常用到函數(shù)的單調(diào)性判斷和連續(xù)數(shù)的介值定理等。
3.利用洛必達(dá)法則求七種未定型的極限。
4.幾何、物理、經(jīng)濟等方面的最大值、最小值應(yīng)用題,解這類問題,主要是確定目標(biāo)函數(shù)和約束條件,判定所論區(qū)間。
5.利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖像,等等。
以上僅供參考,如果考生們有時間也可以自行制作,這樣效果可能會更好。最后預(yù)祝各位考生都能夠取得理想的成績,收到理想學(xué)府的offer。
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復(fù)習(xí)計劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院校考研復(fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(和差角公式)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(常用三角函數(shù)公式)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(三角函數(shù)誘導(dǎo)公式)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(極限公式)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(初等函數(shù))
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(基本積分表)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(三角函數(shù)的有理式積分)
2020考研數(shù)學(xué):高數(shù)基礎(chǔ)知識點(導(dǎo)數(shù)公式)
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |