2021考研數(shù)學各科目答題規(guī)律匯總

最后更新時間:2020-03-04 16:26:29
輔導課程:暑期集訓 在線咨詢
復習緊張,焦頭爛額?逆風輕襲,來跨考秋季集訓營,幫你尋方法,定方案! 了解一下>>

  時間飛逝,2021考研的號角已經(jīng)拉響,數(shù)學作為考研課程中的公共課程在其中起著至關重要的作用。那么2021考研數(shù)學該如何進行復習的?下面小編整理了2021考研數(shù)學各科目部分答題規(guī)律,一起來看看吧。

  第一部分《高數(shù)解題的四種思維定勢》

  1.在題設條件中給出一個函數(shù)f(x)二階和二階以上可導,“不管三七二十一”,把f(x)在指定點展成泰勒公式再說。

  2.在題設條件或欲證結論中有定積分表達式時,則“不管三七二十一”先用積分中值定理對該積分式處理一下再說。

  3.在題設條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內可導,且f(a)=0或f(b)=0或f(a)=f(b)=0,則“不管三七二十一”先用拉格朗日中值定理處理一下再說。

  4.對定限或變限積分,若被積函數(shù)或其主要部分為復合函數(shù),則“不管三七二十一”先做變量替換使之成為簡單形式f(u)再說。

  第二部分《線性代數(shù)解題的八種思維定勢》

  1.題設條件與代數(shù)余子式Aij或A*有關,則立即聯(lián)想到用行列式按行(列)展開定理以及AA*=A*A=|A|E。

  2.若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。

  3.若題設n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。

  4.若要證明一組向量a1,a2,…,as線性無關,先考慮用定義再說。

  5.若已知AB=0,則將B的每列作為Ax=0的解來處理再說。

  6.若由題設條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說。

  7.若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理一下再說。

  8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理一下再說。

  第三部分《概率與數(shù)理統(tǒng)計解題的九種思維定勢》

  1.如果要求的是若干事件中“至少”有一個發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式。

  2.若給出的試驗可分解成(0-1)的n重獨立重復試驗,則馬上聯(lián)想到Bernoulli試驗,及其概率計算公式。

  3.若某事件是伴隨著一個完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計算。關鍵:尋找完備事件組。

  4.若題設中給出隨機變量X~N則馬上聯(lián)想到標準化X~N(0,1)來處理有關問題。

  5.求二維隨機變量(X,Y)的邊緣分布密度的問題,應該馬上聯(lián)想到先畫出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而Y的求法類似。

  6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯(lián)想到二重積分的計算,其積分域D是由聯(lián)合密度的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。

  7.涉及n次試驗某事件發(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對X作(0-1)分解。

  8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統(tǒng)滿足某種關系的概率(或已知概率求隨機變量個數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。

  9.若為總體X的一組簡單隨機樣本,則凡是涉及到統(tǒng)計量的分布問題,一般聯(lián)想到用分布,t分布和F分布的定義進行討論。

  實踐往往大過真理,這就需要我們勤學勤問。形成一定的思維定式,這對我們的考試答題尤為重要。

  (注:本文來自網(wǎng)絡,如有侵權,請聯(lián)系刪除)

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班)
2023集訓暢學 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權均屬北京尚學碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權不得轉載、鏈接、轉帖或以其他任何方式復制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉載稿,本網(wǎng)轉載僅基于傳遞更多信息之目的,并不意味著再通轉載稿的觀點或證實其內容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權等法律責任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責任。

③如本網(wǎng)轉載稿涉及版權等問題,請作者見稿后在兩周內速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220