2021考研數(shù)學基礎(chǔ)復習:求極限的16種方法
數(shù)學作為考研中能夠拉開大分差的科目,有多少考研er是因為數(shù)學與自己心儀的院校失之交臂?考研數(shù)學對于很多考生來說都比較難,建議2021考研數(shù)學基礎(chǔ)不好的小伙伴早點開始復習,下面小編整理了2021考研數(shù)學基礎(chǔ)復習關(guān)于求極限的16種方法,一起來看看吧。
1.極限分為一般極限,還有個數(shù)列極限
區(qū)別在于數(shù)列極 限是發(fā)散的,是一般極 限的一種。
2.解決極限的方法如下
(1)等價無窮小的轉(zhuǎn)化,(只能在乘除時候使用,但是不是說一定在加減時候不能用但是前提是必須證明拆分后極 限依然存在)e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記。(x趨近無窮的時候還原成無窮小)
(2)洛必達法則(大題目有時候會有暗示要你使用這個方法)
首先他的使用有嚴格的使用前提。必須是X趨近而不是N趨近。(所以面對數(shù)列極 限時候先要轉(zhuǎn)化成求x趨近情況下的極 限,當然n趨近是x趨近的一種情況而已,是必要條件。還有一點數(shù)列極 限的n當然是趨近于正無窮的不可能是負無窮!)必須是函數(shù)的導數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導,直接用無疑是死路一條)必須是0比0,無窮大比無窮大!當然還要注意分母不能為0。
洛必達法則分為三種情況
(1)0比0無窮比無窮時候直接用
(2)0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項之后這樣就能變成1中的形式了
(3)0的0次方,1的無窮次方,無窮的0次方
對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,ln(x)兩端都趨近于無窮時候他的冪移下來趨近于0,當他的冪移下來趨近于無窮的時候ln(x)趨近于0)
3.泰勒公式
含有e^x的時候,尤其是含有正余旋的加減的時候要特變注意!e^x展開,sinx展開,cos展開,ln(1+x)展開對題目簡化有很好幫助
4.面對無窮大比上無窮大形式的解決辦法
取大頭原則最大項除分子分母!看上去復雜處理很簡單。
5.無窮小與有界函數(shù)的處理辦法
面對復雜函數(shù)時候,尤其是正余弦的復雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來了!
6.夾逼定理
主要對付的是數(shù)列極 限這個主要是看見極 限中的函數(shù)是方程相除的形式,放縮和擴大。
7.等比等差數(shù)列公式應(yīng)用
對付數(shù)列極 限 q絕對值符號要小于1
8.各項的拆分相加
來消掉中間的大多數(shù) 對付的還是數(shù)列極 限可以使用待定系數(shù)法來拆分化簡函數(shù)。
9.求左右求極 限的方式
對付數(shù)列極 限,例如知道Xn與Xn+1的關(guān)系,已知Xn的極 限存在的情況下,Xn的極 限與Xn+1的極 限是一樣的,應(yīng)為極 限去掉有限項目極 限值不變化。
10.兩個重要極 限的應(yīng)用
這兩個很重要!對第一個而言是x趨近0時候的sinx與x比值。第2個就如果x趨近無窮大無窮小都有對有對應(yīng)的形式(第二個實際上是用于函數(shù)是1的無窮的形式)(當?shù)讛?shù)是1的時候要特別注意可能是用第二個重要極 限)
11.還有個方法,非常方便的方法
就是當趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的。x的x次方快于x!,快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)。當x趨近無窮的時候他們的比值的極 限一眼就能看出來了
12.換元法
是一種技巧,不會對某一道題目而言就只需要換元,但是換元會夾雜其中
13.假如要算的話四則運算法則也算一種方法,當然也是夾雜其中的。
14.還有對付數(shù)列極限的一種方法,就是當你面對題目實在是沒有辦法走投無路的時候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15.單調(diào)有界的性質(zhì)
對付遞推數(shù)列時候使用證明單調(diào)性。
16.直接使用求導數(shù)的定義來求極 限
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)
2022考研初復試已經(jīng)接近尾聲,考研學子全面進入2023屆備考,跨考為23考研的考生準備了10大課包全程準備、全年復習備考計劃、目標院校專業(yè)輔導、全真復試模擬練習和全程針對性指導;2023考研的小伙伴針也已經(jīng)開始擇校和復習了,跨考考研暢學5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復習,暑假集訓營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復習計劃 | |||
2023備考學習 | 2023線上線下隨時學習 | 34所自劃線院校考研復試分數(shù)線匯總 | |
2022考研復試最全信息整理 | 全國各招生院??佳袕驮嚪謹?shù)線匯總 | ||
2023全日制封閉訓練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分數(shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學科門類排行榜 |
相關(guān)推薦
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標準班 | 課程介紹 | 咨詢 |
秋季集訓 | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(wù)(高定班)+復試面授密訓(高定班)+復試1v1(高定班) | |
2023集訓暢學 | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務(wù)+復試全科標準班服務(wù) |