2014考研數(shù)學(xué)考前知識(shí)點(diǎn)終極梳理_跨考網(wǎng)

最后更新時(shí)間:2013-12-14 00:46:20
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢(xún)
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來(lái)跨考秋季集訓(xùn)營(yíng),幫你尋方法,定方案! 了解一下>>

  考研到了最后一個(gè)月,這個(gè)時(shí)候考生在復(fù)習(xí)數(shù)學(xué)時(shí),千萬(wàn)不要再大量做題了,應(yīng)該回歸教材,理清基本的知識(shí)點(diǎn),梳理整個(gè)學(xué)科的知識(shí)框架。保持良好的心態(tài),以最好的狀態(tài)走上考場(chǎng)??缈冀逃龜?shù)學(xué)教研室李擂老師根據(jù)多年的教學(xué)經(jīng)驗(yàn),總結(jié)了考研數(shù)學(xué)高等數(shù)學(xué)的知識(shí)體系,希望能對(duì)廣大能有所幫助。

  從整個(gè)學(xué)科上來(lái)看,高數(shù)實(shí)際上是圍繞著極限、導(dǎo)數(shù)和積分這三種基本的運(yùn)算展開(kāi)的。對(duì)于每一種運(yùn)算,我們首先要掌握它們主要的計(jì)算方法;熟練掌握計(jì)算方法后,再思考利用這種運(yùn)算我們還可以解決哪些問(wèn)題,比如會(huì)計(jì)算極限以后:那么我們就能解決函數(shù)的連續(xù)性,函數(shù)間斷點(diǎn)的分類(lèi),導(dǎo)數(shù)的定義這些問(wèn)題。這樣一梳理,整個(gè)高數(shù)的邏輯體系就會(huì)比較清晰。

  極限部分:

  極限的計(jì)算方法很多,總結(jié)起來(lái)有十多種,這里我們只列出主要的:四則運(yùn)算,等價(jià)無(wú)窮小替換,洛必達(dá)法則,重要極限,泰勒公式,中值定理,夾逼定理,單調(diào)有界收斂定理。每種方法具體的形式教材上都有詳細(xì)的講述,考生可以自己回顧一下,不太清晰的地方再翻到對(duì)應(yīng)的章節(jié)看一看。

  會(huì)計(jì)算極限之后,我們來(lái)說(shuō)說(shuō)直接通過(guò)極限定義的基本概念:

  通過(guò)極限,我們定義了函數(shù)的連續(xù)性:函數(shù)在處連續(xù)的定義是,根據(jù)極限的定義,我們知道該定義又等價(jià)于。所以討論函數(shù)的連續(xù)性就是計(jì)算極限。然后是間斷點(diǎn)的分類(lèi),具體標(biāo)準(zhǔn)如下:

  從中我們也可以看出,討論函數(shù)間斷點(diǎn)的分類(lèi),也僅需要計(jì)算左右極限。

  再往后就是導(dǎo)數(shù)的定義了,函數(shù)在處可導(dǎo)的定義是極限存在,也可以寫(xiě)成極限存在。這里的極限式與前面相比要復(fù)雜一點(diǎn),但本質(zhì)上是一樣的。最后還有可微的定義,函數(shù)在處可微的定義是存在只與有關(guān)而與 無(wú)關(guān)的常數(shù)使得時(shí),有,其中。直接利用其定義,我們可以證明函數(shù)在一點(diǎn)可導(dǎo)和可微是等價(jià)的,它們都強(qiáng)于函數(shù)在該點(diǎn)連續(xù)。

  以上就是極限這個(gè)體系下主要的知識(shí)點(diǎn)。

  導(dǎo)數(shù)部分:

  導(dǎo)數(shù)可以通過(guò)其定義計(jì)算,比如對(duì)分段函數(shù)在分段點(diǎn)上的導(dǎo)數(shù)。但更多的時(shí)候,我們是直接通過(guò)各種求導(dǎo)法則來(lái)計(jì)算的。主要的求導(dǎo)法則有下面這些:四則運(yùn)算,復(fù)合函數(shù)求導(dǎo)法則,反函數(shù)求導(dǎo)法則,變上限積分求導(dǎo)。其中變上限積分求導(dǎo)公式本質(zhì)上應(yīng)該是積分學(xué)的內(nèi)容,但出題的時(shí)候一般是和導(dǎo)數(shù)這一塊的知識(shí)點(diǎn)一起出的,所以我們就把它歸到求導(dǎo)法則里面了。能熟練運(yùn)用這些基本的求導(dǎo)法則之后,我們還需要掌握幾種特殊形式的函數(shù)導(dǎo)數(shù)的計(jì)算:隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)。我們對(duì)導(dǎo)數(shù)的要求是不能有不會(huì)算的導(dǎo)數(shù)。這一部分的題目往往不難,但計(jì)算量比較大,需要考生有較高的熟練度。

  然后是導(dǎo)數(shù)的應(yīng)用。導(dǎo)數(shù)主要有如下幾個(gè)方面的應(yīng)用:切線,單調(diào)性,極值,拐點(diǎn)。每一部分都有一系列相關(guān)的定理,考生自行回顧一下。這中間導(dǎo)數(shù)與單調(diào)性的關(guān)系是核心的考點(diǎn),考試在考查這一塊時(shí)主要有三種考法:①求單調(diào)區(qū)間或證明單調(diào)性;②證明不等式;③討論方程根的個(gè)數(shù)。同時(shí),導(dǎo)數(shù)與單調(diào)性的關(guān)系還是理解極值與拐點(diǎn)部分相關(guān)定理的基礎(chǔ)。另外,數(shù)學(xué)三的考生還需要注意導(dǎo)數(shù)的經(jīng)濟(jì)學(xué)應(yīng)用;數(shù)學(xué)一和數(shù)學(xué)二的考生還要掌握曲率的計(jì)算公式。

  積分部分:

  一元函數(shù)積分學(xué)首先可以分成不定積分和定積分,其中不定積分是計(jì)算定積分的基礎(chǔ)。對(duì)于不定積分,我們主要掌握它的計(jì)算方法:第一類(lèi)換元法,第二類(lèi)換元法,分部積分法。這三種方法要融會(huì)貫通,掌握各種常見(jiàn)形式函數(shù)的積分方法。熟練掌握不定積分的計(jì)算技巧之后再來(lái)看一看定積分。定積分的定義考生需要稍微注意一下,考試對(duì)定積分的定義的要求其實(shí)就是兩個(gè)方面:會(huì)用定積分的定義計(jì)算一些簡(jiǎn)單的極限;理解微元法(分割、近似、求和、取極限)。至于可積性的嚴(yán)格定義,考生沒(méi)有必要掌握。然后是定積分這一塊相關(guān)的定理和性質(zhì),這中間我們就提醒考生注意兩個(gè)定理:積分中值定理和微積分基本定理。這兩個(gè)定理的條件要記清楚,證明過(guò)程也要掌握,考試都直接或間接地考過(guò)。至于定積分的計(jì)算,我們主要的方法是利用牛頓—萊布尼茲公式借助不定積分進(jìn)行計(jì)算,當(dāng)然還可以利用一些定積分的特殊性質(zhì)(如對(duì)稱(chēng)區(qū)間上的積分)。一般來(lái)說(shuō),只要不定積分的計(jì)算沒(méi)問(wèn)題,定積分的計(jì)算也就不成問(wèn)題。定積分之后還有個(gè)廣義積分,它實(shí)際上就是把積分過(guò)程和求極限的過(guò)程結(jié)合起來(lái)了??荚噷?duì)這一部分的要求不太高,只要掌握常見(jiàn)的廣義積分收斂性的判別,再會(huì)進(jìn)行一些簡(jiǎn)單的計(jì)算就可以了。

  會(huì)計(jì)算積分了,再來(lái)看一看定積分的應(yīng)用。定積分的應(yīng)用分為幾何應(yīng)用和物理應(yīng)用。其中幾何應(yīng)用包括平面圖形面積的計(jì)算,簡(jiǎn)單的幾何體(主要是旋轉(zhuǎn)體)體積的計(jì)算,曲線弧長(zhǎng)的計(jì)算,旋轉(zhuǎn)曲面面積的計(jì)算。物理應(yīng)用主要是一些常見(jiàn)物理量的計(jì)算,包括功,壓力,質(zhì)心,引力,轉(zhuǎn)動(dòng)慣量等。其中數(shù)學(xué)一和數(shù)學(xué)二的考生需要全部掌握;數(shù)學(xué)三的考生只需掌握平面圖形面積的計(jì)算,簡(jiǎn)單的幾何體(主要是旋轉(zhuǎn)體)體積的計(jì)算。這一部分題目的綜合性往往比較強(qiáng),對(duì)考生綜合能力要求較高。

  這就是高等數(shù)學(xué)整個(gè)學(xué)科從三種基本運(yùn)算的角度梳理出來(lái)的主要知識(shí)點(diǎn)。除此之外,考生需要掌握的知識(shí)點(diǎn)還有多元函數(shù)微積分,它實(shí)際上是將一元函數(shù)中的極限,連續(xù),可導(dǎo),可微,積分等概念推廣到了多元函數(shù)的情況,考生可以按照上面一樣的思路來(lái)總結(jié)。另外還有兩章:級(jí)數(shù)、微分方程。它們可以看做是對(duì)前面知識(shí)點(diǎn)綜合的應(yīng)用。比如微分方程,它實(shí)際上就是積分學(xué)的推廣,解微分方程就是求積分。而級(jí)數(shù)則是對(duì)極限,導(dǎo)數(shù)和積分各種知識(shí)的綜合應(yīng)用。

  2014年考研沖刺備考專(zhuān)題

  2014年考研試題答案-跨考教育考后首發(fā)

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專(zhuān)業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開(kāi)始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無(wú)論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來(lái)了院校專(zhuān)業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門(mén);個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!

點(diǎn)擊右側(cè)咨詢(xún)或直接前往了解更多

考研院校專(zhuān)業(yè)選擇和考研復(fù)習(xí)計(jì)劃
2023備考學(xué)習(xí) 2023線上線下隨時(shí)學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國(guó)各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專(zhuān)業(yè)如何選擇更適合自己的 從就業(yè)說(shuō)考研如何擇專(zhuān)業(yè)?
手把手教你如何選專(zhuān)業(yè)? 高校研究生教育各學(xué)科門(mén)類(lèi)排行榜

跨考考研課程

班型 定向班型 開(kāi)班時(shí)間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢(xún)
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專(zhuān)業(yè)課1對(duì)1+專(zhuān)業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專(zhuān)屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專(zhuān)業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專(zhuān)業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專(zhuān)屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來(lái)源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢(xún)有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來(lái)源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來(lái)源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來(lái)源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來(lái)源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)作者見(jiàn)稿后在兩周內(nèi)速來(lái)電與跨考網(wǎng)聯(lián)系,電話:400-883-2220