2014考研數(shù)學(xué):警惕五種常犯錯(cuò)誤_跨考網(wǎng)

最后更新時(shí)間:2013-07-25 21:51:38
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來跨考秋季集訓(xùn)營,幫你尋方法,定方案! 了解一下>>

  數(shù)學(xué)是研究生入學(xué)考試的一門重要課程,也是最易拉分的門科。在以往的考研數(shù)學(xué)中,有許多同學(xué)反應(yīng),平時(shí)復(fù)習(xí)的很好,但在做題時(shí)就是容易出錯(cuò),甚至?xí)龅念}也會(huì)因?yàn)轳R虎出現(xiàn)計(jì)算錯(cuò)誤或者不能得全分的情況。對(duì)于2014考研學(xué)子在復(fù)習(xí)中遇到的問題,跨考考研數(shù)學(xué)教研室老師為大家總結(jié)考點(diǎn)及考點(diǎn)分析,并為考生建立復(fù)習(xí)規(guī)劃,希望對(duì)大家的復(fù)習(xí)有所幫助!》》考研數(shù)學(xué)復(fù)習(xí)指導(dǎo)

  一、考試中學(xué)生常犯的五種錯(cuò)誤

  結(jié)合往屆考研同學(xué)在考試中出現(xiàn)的問題,大致總結(jié)出同學(xué)們在平時(shí)復(fù)習(xí)及考試中可能存在的五個(gè)問題:

  1、概念不清。概念幾乎是一切數(shù)學(xué)解題的基礎(chǔ),有同學(xué)在平時(shí)復(fù)習(xí)中只注重概念的死記硬背,卻忽略了對(duì)概念的理解。另外,數(shù)學(xué)概念眾多,久而久之就會(huì)出現(xiàn)概念混亂,概念一旦出錯(cuò),解題就會(huì)出現(xiàn)問題。

  2、基本公式理解和掌握得不好,錯(cuò)誤地使用公式。基本公式理解和掌握不好,幾乎很多同學(xué)都會(huì)犯這個(gè)毛病,基本公式的掌握程度直接表現(xiàn)出考生平時(shí)做題的多少,光憑死記硬背是不能加深印象的,一些對(duì)基本公式理解和掌握好的同學(xué),必然是通過長時(shí)間的訓(xùn)練鞏固來的。

  3、計(jì)算能力差,很多簡單的計(jì)算卻得到錯(cuò)誤的答案。針對(duì)這個(gè)問題,有人認(rèn)為是做題太少的問題,但考研輔導(dǎo)專家認(rèn)為,這是習(xí)慣問題,而且是一種從小就養(yǎng)成的馬虎習(xí)慣造成的。例如平時(shí)做題,有些計(jì)算不愿動(dòng)筆,直接用腦計(jì)算,這樣勢必會(huì)有記憶錯(cuò)誤的時(shí)候,告誡同學(xué)們:好記性不如爛筆頭。

  4、綜合運(yùn)用所學(xué)知識(shí)分析問題和解決問題的能力較差。對(duì)于考查多個(gè)知識(shí)點(diǎn)的綜合性試題,考生往往解答的不好,做不完整,得高分的很少。這是典型的對(duì)各章節(jié)知識(shí)融合的能力不夠所致,說明學(xué)生在沖刺階段的復(fù)習(xí)出現(xiàn)了問題。

  5、靈活運(yùn)用所學(xué)知識(shí)解決實(shí)際應(yīng)用問題的能力較差。對(duì)于經(jīng)濟(jì)、生產(chǎn)、生活中的實(shí)際問題,要根據(jù)所學(xué)的基本概念和基本理論進(jìn)行分析判斷,抽象出數(shù)學(xué)模型才能獲得解決。這是很多考生的弱點(diǎn),因此得分率較低。

  針對(duì)在歷屆考生答卷中存在的這些問題,應(yīng)屆考生必須早些開始復(fù)習(xí),要按照考試大綱規(guī)定的考試內(nèi)容和考試要求全面系統(tǒng)的復(fù)習(xí),掌握核心內(nèi)容,掌握解題的方法和技巧,把本門課程復(fù)習(xí)好。前三個(gè)問題,一般是考研復(fù)習(xí)的前兩個(gè)階段疏忽所致,后兩個(gè)問題,重點(diǎn)是沖刺階段對(duì)考研數(shù)學(xué)出題思路理解不夠。

  二、考研高數(shù)考試的重難點(diǎn)分析

  考研數(shù)學(xué)復(fù)習(xí),必須按照《數(shù)學(xué)考試大綱》基本要求去做,考試大綱要求考生比較系統(tǒng)的理解數(shù)學(xué)的基本概念和基本理論,掌握數(shù)學(xué)基本方法,要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、運(yùn)算能力和綜合運(yùn)用所學(xué)的知識(shí)分析和解決問題的能力??佳休o導(dǎo)專家結(jié)合2013《數(shù)學(xué)考試大綱》規(guī)定的考試內(nèi)容和考試要求,粗略地剖析以下本門課程的重點(diǎn)和難點(diǎn)。

  1、函數(shù) 極限 連續(xù)

 ?、僬_理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。②理解極限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個(gè)重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會(huì)用等價(jià)無窮小求極限。③理解函數(shù)連續(xù)性的概念,會(huì)判別函數(shù)間斷點(diǎn)的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會(huì)應(yīng)用這些性質(zhì)。重點(diǎn)是數(shù)列極限與函數(shù)極限的概念,兩個(gè)重要的極限:lim sinx/x =1, lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點(diǎn)是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

  2、一元函數(shù)微分學(xué)

 ?、倮斫鈱?dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。②掌握導(dǎo)數(shù)的四則運(yùn)算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。③ 理解并會(huì)用羅爾中值定理,拉格朗日中值定理,了解并會(huì)用柯西中值定理。④理解函數(shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡單應(yīng)用,會(huì)用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點(diǎn),會(huì)求函數(shù)圖形水平鉛直和斜漸近線。⑤了解曲率和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑及兩曲線的交角。⑥掌握用羅必塔法則求未定式極限的方法,重點(diǎn)是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點(diǎn)的求法。難點(diǎn)是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計(jì)算。

  3、一元函數(shù)積分學(xué)

 ?、倮斫庠瘮?shù)和不定積分和定積分的概念。②掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。③會(huì)求有理函數(shù)、三角函數(shù)和簡單無理函數(shù)的積分 ④理解變上限積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。⑤了解廣義積分的概念并會(huì)計(jì)算廣義積分。⑥掌握用定積分計(jì)算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點(diǎn)是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計(jì)算及應(yīng)用。難點(diǎn)是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

  4、向量代數(shù)與空間解析幾何

  ①理解向量的概念及其表示。②掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個(gè) 向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式以及用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。③掌握平面方程和直線方程及其求法,會(huì)利用平面直線的相互關(guān)系解決有關(guān)問題。④理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。⑤了解空間曲線的參數(shù)方程和一般方程;了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。

  5、多元函數(shù)微分學(xué)

 ?、倭私舛瘮?shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)②理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分。③理解方向?qū)?shù)與梯度的概念并掌握其計(jì)算方法。④掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,會(huì)求隱函數(shù)的偏導(dǎo)數(shù)。⑤了解曲線的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求多元函數(shù)的最大值和最小值及一些簡單的應(yīng)用問題。重點(diǎn)是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全重點(diǎn)是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全微分的概念及計(jì)算復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度的概念及其計(jì)算??臻g曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。難點(diǎn)是多元復(fù)合函數(shù)的求導(dǎo)法,二函數(shù)的泰勒公式。

  6、多元函數(shù)積分學(xué)

 ?、倮斫舛胤e分與三重積分的概念,了解重積分的性質(zhì)。②掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計(jì)算方法,會(huì)計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))。③理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系;掌握計(jì)算兩類曲線積分的方法;掌握格林公式并會(huì)運(yùn)用平面曲線積分與路徑無關(guān)的條件。④了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法。⑤會(huì)用重積分、曲線積分和曲面積分求一些幾何量和物理量。重點(diǎn)是利用直角坐標(biāo)、極坐標(biāo)計(jì)算二重積分。利用直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)計(jì)算三重積分。兩類曲線積分的概念、性質(zhì)及計(jì)算,格林公式。兩類曲面積分的概念、性質(zhì)及計(jì)算,高斯公式。難點(diǎn)是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計(jì)算。第二類曲面積分與斯托克斯公式。

  7、無窮級(jí)數(shù)

 ?、僬莆占?jí)數(shù)的基本性質(zhì)及其級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)與p級(jí)數(shù)的收斂性;掌握比值審斂法,會(huì)用正項(xiàng)級(jí)數(shù)的比較與根值審斂法。②會(huì)用交錯(cuò)級(jí)數(shù)的萊布尼茲定理,了解絕對(duì)收斂和條件收斂的概念及它們的關(guān)系。③會(huì)求冪級(jí)數(shù)的和函數(shù)以及數(shù)項(xiàng)級(jí)數(shù)的和,掌握冪級(jí)數(shù)收斂域的求法④掌握ex 、sinx、cosx、ln( 1 + x),(1 + x)α的馬克勞林展開式,會(huì)用它們將簡單函數(shù)作間接展開;會(huì)將定義在 [-L,L]上的函數(shù)展開為傅立葉級(jí)數(shù),會(huì)將定義在上的函數(shù)展開為正弦級(jí)數(shù)和余弦函數(shù)。重點(diǎn)是數(shù)項(xiàng)級(jí)數(shù)的概念與性質(zhì),正項(xiàng)級(jí)數(shù)的審斂法,交錯(cuò)級(jí)數(shù)及其審斂法,絕對(duì)收斂與條件收斂的概念。冪級(jí)數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級(jí)數(shù)。難點(diǎn)是求冪級(jí)數(shù)的和函數(shù),將函數(shù)展成冪級(jí)數(shù)、傅立葉級(jí)數(shù)。

  8、常微分方程

 ?、?了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。②會(huì)用降階法解y ( n) =f ( x) ,y″=f ( x ,y) ,y″=f ( y ,y’)類的方程;理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。③掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。④會(huì)解包含兩個(gè)未知函數(shù)的一階常系數(shù)線性微分方程組。重點(diǎn)是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點(diǎn)是由實(shí)際問題建立微分方程及確定定解條件。

  以上八點(diǎn)幾乎涵蓋了考研數(shù)學(xué)所有重點(diǎn)知識(shí),考生如能掌握以上知識(shí),并能融會(huì)貫通,那五個(gè)考生易出現(xiàn)的錯(cuò)誤基本可以得到很好解決。

  相關(guān)推薦:2014考研復(fù)習(xí)全程規(guī)劃

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!

點(diǎn)擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃
2023備考學(xué)習(xí) 2023線上線下隨時(shí)學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開班時(shí)間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問題,請(qǐng)作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220