2016年考研數(shù)學(xué)大綱解析之中值定理
2016年考研數(shù)學(xué)大綱解析之中值定理
2016年考研大綱已發(fā)布,關(guān)于考研數(shù)學(xué)中中值定理的證明依然很重要。它的相關(guān)證明是考研數(shù)學(xué)認(rèn)的重點和難點,往年這部分的??甲C明題這種大題。然而最近兩年沒考這一部分大題。2014年的高數(shù)證明題考的函數(shù)不等式的證明,而2015出乎意料地考了一個用導(dǎo)數(shù)定義證明求導(dǎo)公式的證明題。雖然這兩年沒有考這部分的大題,但作為以前常考大題的考點,所以我們不能對這部分內(nèi)容掉以輕心。那關(guān)于這部分的內(nèi)容我們?nèi)绾稳グ芽?跨考教育數(shù)學(xué)教研室吳方方老師就為大家進(jìn)行詳細(xì)的講解。
首先對于中值定理我們應(yīng)該把這部分的定理內(nèi)容弄清楚。我們要用這些定理去證明別的結(jié)論,先要自己把這些內(nèi)容弄透、弄熟。具體來說,關(guān)于這部分涉及的定理有:費(fèi)馬引理、羅爾定理、拉格朗日定理、柯西定理、零點存在定理、介值定理、最值定理和積分中值定理。前四個定理屬于微分中值定理的部分,中間三個定理屬于閉區(qū)間上連續(xù)函數(shù)的性質(zhì),最后一個為積分相關(guān)定理。而這里,除了閉區(qū)間上連續(xù)函數(shù)的性質(zhì)這幾個定理外,其余定理是要求我們會證明的。
其次,我們在現(xiàn)階段應(yīng)總結(jié)真題中考過的此類題目的處理思路。這部分工作可以自己完成,但可能需要花費(fèi)一些時間。
中值相關(guān)證明大部分情況下應(yīng)從結(jié)論出發(fā)??佳兄兴蟮年P(guān)于中值定理這塊的證明百分之六十到七十都是要去用羅爾定理來證明的。在做此類證明時,我們要看所要證明的式子是含一個中值還是兩個中值,緊接著要看所要求的中值是屬于開區(qū)間還是閉區(qū)間的。如果是在含有一個中值的前提下,再看是否含有導(dǎo)數(shù)。若是含一個中值,且這個中值時屬于開區(qū)間的,并且有含有導(dǎo)數(shù),這時我們往往要考研羅爾定理。在確定用羅爾定理的前提下,緊接著我們就是構(gòu)造輔助函數(shù)并且找兩個點的函數(shù)值相等,當(dāng)然這里我們在找兩個相等點時,不一定要求是找區(qū)間的端點,也有可能是區(qū)間內(nèi)部的點。如果含有一個中值,中值所屬于的區(qū)間是開區(qū)間或者是閉區(qū)間,并且不含有導(dǎo)數(shù),那考慮閉區(qū)間上連續(xù)函數(shù)的性質(zhì),在第一章閉區(qū)間上連續(xù)里我們有兩個常用的定理--零點定理和介值定理。如果區(qū)間是開區(qū)間則選擇零點定理,如果區(qū)間是閉區(qū)間則選擇介值定理來證明。
說到這里,一個中值的情況我們就分析完了。下面我們主要談?wù)勅绾慰紤]兩個中值的情況。如果需要證明的式子中含有兩個中值,這個時候我們要考慮需要用幾次定理來證明。我們知道用一次定理得到的式子只含有一個中值,即使是比較麻煩的柯西中值定理也是這樣。因此,若是要出現(xiàn)兩個中值,那一定是用了兩次中值定理。當(dāng)然,我們在用兩次定理后,這時一定會得到兩個式子,而最終所得到的式子含兩個中值應(yīng)該為前面我們所得到的兩個式子合并后的結(jié)果。根據(jù)歷年真題的詳細(xì)解讀,含有兩個中值的情況一般我們會考慮用兩次拉格朗日中值定理或一次拉格朗日中值定理和一次柯西定理。具體怎么用這個兩個定理,以及如何選擇輔助函數(shù),我們一般可以通過所要證明的式子來確定。
如果所要證明的式子有三個中值,這種情況和上面兩個中值的情況是類似的。一般情況下,如果三個中值要求是不同點,則一般分區(qū)間,我們可以考慮利用三次拉格朗日中值定理來處理。
因此,對于這一塊的有關(guān)中值定理的內(nèi)容,要從中值出發(fā),找相關(guān)的特質(zhì)點,來確定所用是哪一個中值定理,到底用一次還是用兩次。又或者兩個結(jié)合起來用,又或者用三次中值定理來解決。無論怎樣,把基本定理整明白,理清我們上面分析真題的思路和方法。當(dāng)然有上述這些情況的分析,并不是就可以解決掉所有有關(guān)這方面的題目了,畢竟是真題,它其中的變形是多樣的,因此,在我們有了上述大題分析題目的思路情況下,還需要把各個細(xì)節(jié)給打通。所以當(dāng)我們確定用羅爾定理了,緊接著要考慮的就是輔助函數(shù)的構(gòu)造,以及要找函數(shù)值相等的點。又或者當(dāng)我們確定用拉格朗日中值定理或柯西中值定理時,也需要我們考慮有關(guān)輔助函數(shù)的構(gòu)造。因此,如何選擇中值定理,如何考慮輔助函數(shù)的構(gòu)造是需要我們仔細(xì)琢磨,慢慢精通的。
相關(guān)推薦 | ||
考研指南 | ||
報名指導(dǎo) | ||
最新推薦 |
關(guān)注“跨考教育”,聽說考研的人都關(guān)注了!
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復(fù)習(xí)計劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院校考研復(fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2021考研數(shù)學(xué)(一)大綱原文:概率論與數(shù)理統(tǒng)計
2021考研數(shù)學(xué)(一)大綱原文:線性代數(shù)部分
2021考研數(shù)學(xué)(一)大綱原文:高等數(shù)學(xué)部分
2021大綱解析之?dāng)?shù)一、二、三常微分方程部分對比
2021考研數(shù)學(xué)一考試大綱與2020變化對比(高數(shù)部分)
2021新大綱發(fā)布后考研數(shù)學(xué)備考策略
【跨考名師解析】對2021考研數(shù)學(xué)大綱內(nèi)容改革的分析
【跨考名師解析】2021考研數(shù)學(xué)大綱框架變動分析
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |