2019考研數(shù)學(xué)三考試大綱(線代部分)考試內(nèi)容和要求變化分析

最后更新時間:2018-09-15 13:23:19
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來跨考秋季集訓(xùn)營,幫你尋方法,定方案! 了解一下>>
  2019考研數(shù)學(xué)三大綱已經(jīng)發(fā)布,跨考教育數(shù)學(xué)教研室老師特為大家整理了2019考研數(shù)學(xué)三考試大綱(線代部分)考試內(nèi)容和要求變化分析,可以看出,數(shù)學(xué)三大綱今年并沒有什么變化。

章節(jié)

2018年考試數(shù)學(xué)大綱考試內(nèi)容和考試要求

2019年考試數(shù)學(xué)大綱考試內(nèi)容和考試要求

變化

一、行列式

考試內(nèi)容

行列式的概念和基本性質(zhì) 行列式按行(列)展開定理

考試要求

1.了解行列式的概念,掌握行列式的性質(zhì).
2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.

考試內(nèi)容

行列式的概念和基本性質(zhì) 行列式按行(列)展開定理

考試要求

1.了解行列式的概念,掌握行列式的性質(zhì).
2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.

對比
:無變化

二、矩陣

考試內(nèi)容

矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價  分塊矩陣及其運算

考試要求

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì).
2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則.

考試內(nèi)容

矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價  分塊矩陣及其運算

考試要求

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì).
2.掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則.

對比
:無變化

三、向量

 

考試內(nèi)容

向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組  等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系  向量的內(nèi)積  線性無關(guān)向量組的正交規(guī)范化方法

考試要求

1.了解向量的概念,掌握向量的加法和數(shù)乘運算法則.
2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.
3.理解向量組的極大線性無關(guān)組的概念,會求向量組的極大線性無關(guān)組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.
5.了解內(nèi)積的概念.掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.

 

考試內(nèi)容
向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組  等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系  向量的內(nèi)積  線性無關(guān)向量組的正交規(guī)范化方法

考試要求

1.了解向量的概念,掌握向量的加法和數(shù)乘運算法則.
2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.
3.理解向量組的極大線性無關(guān)組的概念,會求向量組的極大線性無關(guān)組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.
5.了解內(nèi)積的概念.掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.

對比
:無變化

四、線性方程組

考試內(nèi)容     

線性方程組的克拉默(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎(chǔ)解系和通解  非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解

考試要求

1.會用克拉默法則解線性方程組.
2.掌握非齊次線性方程組有解和無解的判定方法.
3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.
4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.

考試內(nèi)容    

線性方程組的克拉默(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎(chǔ)解系和通解  非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解

考試要求

1.會用克拉默法則解線性方程組.
2.掌握非齊次線性方程組有解和無解的判定方法.
3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.
4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.

對比
:無變化

五、矩陣的特征值和特征向量

 

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值和特征向量及相似對角矩陣

考試要求

1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.
2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特征值和特征向量的性質(zhì).

 

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值和特征向量及相似對角矩陣

考試要求

1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.
2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特征值和特征向量的性質(zhì).

對比
:無變化

六、二次型

考試內(nèi)容

二次型及其矩陣表示  合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.
3.理解正定二次型、正定矩陣的概念,并掌握其判別法.

考試內(nèi)容

二次型及其矩陣表示  合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.
3.理解正定二次型、正定矩陣的概念,并掌握其判別法.

對比
:無變化

  本文為跨考教育數(shù)學(xué)教研室高揚老師原創(chuàng),轉(zhuǎn)載請注明出處。

 

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!

點擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計劃
2023備考學(xué)習(xí) 2023線上線下隨時學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國各招生院校考研調(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開班時間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220